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Abstract
The story of linear programming is one with all the elements of a grand historical drama.
The original idea of testing if a polyhedron is non-empty by using a variable elimination
to project down one dimension at a time until a tautology emerges dates back to a paper
by Fourier in 1823. This gets re-invented in the 1930s by Motzkin. The real interest in
linear programming happens during World War II when mathematicians ponder best ways
of utilising resources at a time when they are constrained. The problem of optimising a
linear function over a set of linear inequalities becomes the focus of the effort. Dantzig’s
SimplexMethod is announced and the Rand Corporation becomes a hot bed of computational
mathematics. The range of applications of this modelling approach grows and the powerful
machinery of numerical analysis and numerical linear algebra becomes a major driver for the
advancement of computingmachines. In the 1970s, constructs of theoretical computer science
indicate that linear programmingmay in fact define the frontier of tractable problems that can
be solved effectively on large instances. This raised a series of questions and answers: Is the
SimplexMethod a polynomial-timemethod and if not canwe construct novel polynomial time
methods, etc. And that is how the Ellipsoid Method from the Soviet Union and the Interior
Point Method from Bell Labs make their way into this story as the heroics of Khachiyan and
Karmarkar. We have called this paper a primer on linear programming since it only gives the
reader a quick narrative of the grand historical drama. Hopefully it motivates a young reader
to delve deeper and add another chapter.

Keywords Linear inequalities · Linear programming · Optimisation · Duality · Simplex
method · Ellipsoid method · Interior point method · Monotone

This paper is an extended version of the original paper “The French Connection” by the authors Vijay
Chandru and M R Rao as a part of the series “175 Years of Linear Programming” published in Resonance-
Journal of Science Education, Vol 3, Issue 10, October 1998, pp 26–40. This paper also draws on some
material in “Linear Programming,” Chapter 31 by V. Chandru and M.R.Rao in Handbook of Algorithms and
Theory of Computing, edited by M.J.Atallah, CRC Press 1999, 31-1 to 31-37.

B M. R. Rao
mr_rao@isb.edu

1 Department of Mathematics, Indian Institute of Science, Bangalore, India

2 Robert Bosch Centre for Cyber Physical Systems, Indian Institute of Science, Bangalore, India

3 Indian School of Business, Hyderabad, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-019-03186-2&domain=pdf
http://orcid.org/0000-0002-9980-3051


Annals of Operations Research

1 Introduction

We are all familiar with computing a solution to simultaneous linear equations by eliminating
variables sequentially and followed by back substitution. However, elimination in linear
inequalities requires more work and is related to polyhedral theory and linear programming,
which we shall discuss in the subsequent sections.

The history of Linear Programming dates back at least as far as 1827 when Joseph Fourier,
a celebrated French mathematician, formulated the first linear programming problem as a
problem of solving a system of linear inequalities and published a method for solving it.

However, linear programming was developed as a formal discipline only as recently as
the 1940s, motivated initially by the need to solve complex planning problems in wartime
operations. The World War II provided both the urgency and funds for such research as
efficient resource allocation was required for large scale military planning. Its development
accelerated rapidly in the postwar period as many industries found valuable uses for linear
programming to allocate a finite set of resources in an optimal way.

The founders of the subject are generally regarded as George B. Dantzig and John Von
Neumann. Dantzig devised the simplex algorithm in 1947 along with his associates at the
US Dept. of Air Force. Dantzig arranged a meeting with John Von Neumann in the same
year to discuss his simplex method. Neumann immediately conjectured the theory of LP
Duality by realising that the problem he had been working on in game theory was equivalent.
Both Dantzig and von Neumann recognised that the linearity assumptions of the model were
restrictive but key to efficient solutions.

In 1939, Leonid Kantorovich, a Soviet USSRmathematician, had also developed a similar
LP problem with the goal to improve economic planning in USSR. Around the same time,
American economist T.C. Koopmans started formulating classic economic problems as linear
programs and developed a special linear programming solution used to plan the optimal
movement of ships back and forth across the Atlantic during the war. Kantorovich and
Koopmans later shared the Nobel Prize in Economics in 1975. Important contributions from
the erstwhile Soviet Union was the Ellipsoid Method due first to Shor and specialised for
approximate convex optimisation by Nemirovsky and Yudin in 1972. Leonid Khachiyan
specialised it for linear optimisation and proved the polynomial-time solvability of linear
programming, an important breakthrough in 1979. These historical contributions are detailed
in the 1982 paper by Grötschel et al. (1982).

Khachiyan’s breakthrough did not prove to be a viable alternative to the Simplex Method
as the workhorse of linear programming. It was Narendra Karmarkar, a young computer
scientist of Indian origin at AT&T Bell labs, who showed that an interior point method,
invariant to projective transformations, could yield both a theoretically efficient and practical
method for linear programming.

Linear programming addresses two fundamental problems:

(i) Solvability This is the problem of checking if a system of simultaneous linear inequal-
ities on real variables is solvable or not. Geometrically, we have to check if a (convex)
polyhedron, defined by such constraints, is non-empty.

(ii) Optimisation Linear programming aims to optimise a linear objective function subject
to linear equality and inequality constraints.

Fourier’s method for solving a system of linear inequalities can be used for solving linear
programming problems. But it is not a polynomial time algorithm and moreover not appro-
priate from a practical point of view for solving large-sized problems, i.e. problems with
a large number of inequalities and variables. The Simplex method for linear programming
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problems developed by Dantzig is also not a polynomial time algorithm but has been found
to be useful, with several bells and whistles added to it over the years, for solving large
sized problems. As noted above, it was first the Ellipsoid Method and then the Interior Point
Method that turned out to be provably of polynomial-time complexity with the latter also
yielding practical algorithms for large scale linear programming. Dantzig’s simplex method,
with various modifications for speeding up the algorithm, continues to be indispensable for
solving linear programming problems and most optimisation platforms today offer a choice
of Simplex and Interior-Point Solvers with the latter finding more use in really large scale
linear programming problems. Large scale problems have been effectively solved by the
primal–dual variants of interior point methods using a “predictor-corrector” approach cred-
ited to Kojima, Megiddo and Mizuno. For a readable commentary on the theory and practice
of interior point methods, the reader is directed to the exposition by Todd (1994).

2 Fourier’s eliminationmethod

Solving a system of the form Ax ≤ b, where A is am×n matrix of real numbers, x is a n×1
matrix and b is a m × 1 matrix, is the essential task of linear programming. We now describe
an elegant syntactic method for this problem known as Fourier elimination.1 The idea behind
it is to derive implied equations/inequalities in which one or more variables are erased. By
recursively applying the technique, we arrive at a one or two variable system which can
be solved by inspection. The required property is that a solution to the lower dimensional
representation can always be extended to a solution of the original system.

Observe that variable elimination in linear inequalities is different from elimination in
equations. If we have two equations in two variables, we can take a linear combination and
derive a third equation with one of the variables eliminated. The third equation along with the
first (or the second) describes the same solution as the original system. This invariance is lost
when we move to inequalities and we have to contend with a growing system. Fourier made
the remarkable observation that this growth can be contained to be quadratic, per eliminated
variable, since it suffices to consider pairs of inequalities which satisfy certain syntactic
patterns, as we shall see in the next section. For connections with symbolic reasoning and
constraint logic programming, the reader is directed to Lassez and Maher (1988).

2.1 Syntactics

Suppose we wish to eliminate the first variable x1 from the system Ax ≤ b. Our goal is
to create an equivalent system of linear inequalities Ãx̃ ≤ b̃ defined on the variables x̃ =
(x2, x3, . . . , xn). All inequalities containing x1 are paired so that the signs of the coefficient
of x1 in each pair are opposite. If x1 appears in an inequality with a negative sign, it is re-
written so that x1 appears alone on the right hand side and conversely on the left-hand side
if the sign is positive. The inequality constraint set S is thus partitioned into three sets:

T = set of inequalities of S in which x1 has a negative coefficient
U = set of inequalities of S in which x1 has a positive coefficient
V = set of inequalities of S which doesn’t contain x1

1 This method is sometimes referred to as Fourier–Motzkin Elimination in the literature as there was pre-
sumably an independent rediscovery (Fourier 1826) of the method over a 100 years later by Motzkin (1936),
Dantzig and Eaves (1973) and extended by Cerkinov (1961) and Chandru (1993).

123



Annals of Operations Research

For each pair of inequalities, one belonging to T and the other in U, we get a new inequality
with x1 eliminated. This is the first step to the Fourier elimination. Note that if the sets T and
U are roughly half the total number of inequalities of S, the result will be an addition of a
quadratic number of new inequalities. Thus, the projection of polyhedra to lower dimensional
spaces can create an exponential growth in representation.

We note that both T and U cannot be empty for otherwise x1 is already eliminated from
the system of inequalities. In the case when either T or U is empty, i.e. the variable x1 always
appears with the same sign in S, we need consider only the set V inwhich x1 has its coefficient
as 0, because the set U can easily be satisfied by an appropriate choice of x1 given any values
for the other variables, which also satisfy the set V. If in addition, V is also empty, the system
is strongly solvable. A set of inequalities S is said to be strongly solvable if and only if any
modification of the right-hand side constants of the inequalities of S results in a new solvable
set Lassez (1991). If one of T or U is an empty set along with V, we have a situation that x1
is monotone positive (or negative) in all inequalities. Hence for any choice of b, we can set
x1 to satisfy all inequalities.

If all the inequalities are deleted in the first step itself, the equivalent system Ãx̃ ≤
b̃ is undefined and we declare the original system strongly solvable. Else, we repeat this
construction with Ãx̃ ≤ b̃ to eliminate another x̃ j , j �= i and so on until all variables are
eliminated. After eliminating all n variables, if the final b̃ is non-negative we declare the
original inequality system as being solvable otherwise the system is unsolvable.

We shall demonstrate the method with three examples.

Example 1 Let S denote the system of linear inequalities

{−x1 + 2x2 ≤ 3, 2x1 − 7x2 ≤ −15,−x1 ≤ 0,−x2 ≤ 0}.
Let us eliminate x1. We write all the inequalities involving x1 in the following way:

x1 ≥ 2x2 − 3

x1 ≤ 7

2
x2 − 15

2
x1 ≥ 0

x2 ≥ 0

Now the elimination of x1 is achieved by setting the maximum to be no larger than the
minimum. Thus for any x̃ solving Ãx̃ ≤ b̃, it is ensured that we will obtain a non empty
range for x1. Hence, in order to eliminate x1, we get 2x2 − 3 ≤ 7

2 x2 − 15
2 �⇒ x2 ≥ 3.

Also 0 ≤ 7
2 x2 − 15

2 �⇒ x2 ≥ 15
7 . If we take x2 = 5 (which satisfies both inequalities),

after back substituting this value in S, we obtain 7 ≤ x1 ≤ 10 as the corresponding range of
feasible values for x1.

Equivalently S could be written of the form Ax ≤ b where

A =

⎛
⎜⎜⎝

−1 2
2 −7

−1 0
0 −1

⎞
⎟⎟⎠ , x =

(
x1
x2

)
and b =

⎛
⎜⎜⎝

3
−15
0
0

⎞
⎟⎟⎠ . (1)

Elimination of a variable is equivalent to adding a positive multiple of one inequality to
another. Hence, eliminating x1 is equivalent to multiplying A and b on the left by a non-

negative matrix R where R =
⎛
⎝
2 1 0 0
0 1 2 0
0 0 0 1

⎞
⎠ .
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Now RAx ≤ Rb �⇒ −3x2 ≤ −9, −7x2 ≤ −15,−x2 ≤ 0. The sets U and V are
empty and hence the system is strongly solvable.

Example 2 As another example let S be given by

{x + 4y − z ≤ 2, −2x − 3y + z ≤ 1, −3x − 2y + z ≤ 0, 4x + y − z ≤ −1}
Here,

A =

⎛
⎜⎜⎝

1 4 −1
−2 −3 1
−3 −2 1
4 1 −1

⎞
⎟⎟⎠ , u =

⎛
⎝
x
y
z

⎞
⎠ and b =

⎛
⎜⎜⎝

2
1
0

−1

⎞
⎟⎟⎠ . (2)

Eliminating x is equivalent to multiplying A and b on the left with non negative matrix R

where R =

⎛
⎜⎜⎝
1 1/2 0 0
0 1/2 0 1/4
1 0 1/3 0
0 0 3 9/4

⎞
⎟⎟⎠. We now get the following:

5/2 y − 1/2 z ≤ 5/2

−5/4 y + 1/4 z ≤ 1/4

10/3 y − 2/3 z ≤ 2

−15/4 y + 3/4 z ≤ −9/4

Note that the second inequality generated above is redundant because it is implied by the
fourth inequality generated. The third and fourth inequalities generated above imply that
z = 5y − 3. The third inequality above is generated by eliminating x from the original first
and third inequalities while the fourth inequality above is generated from the original first
and fourth inequalities. It is easily verified that the original first, third and fourth inequalities
imply that z = 5y − 3.

Substituting this in the original set of inequalities in S gives:

x − y ≤ −1

−2x + 2y ≤ 4

−3x + 3y ≤ 3

4x − 4y ≤ −4

Note that the fourth inequality generated is redundant as it is equivalent to the first inequality
generated. The second inequality generated is dominated by the third inequality generated.

Thefirst and third inequalities generated above together define an implicit equation x−y =
−1. If we substitute z = 5y − 3 in the original four inequalities, the first and the third
inequalities imply that x − y = −1. If y = 1, then z = 2 which implies that {x ≤ 0, −2x ≤
2, −3x ≤ 0, 4x ≤ 0} �⇒ x = 0.

Example 3 Consider the system of inequalities

{x + 4y − z ≤ 2, −10y + 2z ≤ −8,−3x − 2y + z ≤ 0, 4x + y − z ≤ −1}
On eliminating x , when the first and third inequalities are considered together, we get 10y −
2z ≤ 6, but the second inequality constraint states 10y − 2z ≥ 8 which clearly implies that
there exist no feasible values for y and z. Thus this system is not solvable.
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2.2 Projection: the geometry of elimination

We saw earlier that Fourier elimination of a variable in a linear inequality system actually
constructs the projection or shadow of the convex polyhedron in the space that is diminished
in dimension by one. Not surprisingly, the projection of a convex polyhedron is another
convex polyhedron as described by the system of linear inequalities produced by the Fourier
construction.

It is natural towonder if elimination of a block of variables can be executed simultaneously-
rather than one variable at a time. Indeed this is possible and in fact leads to a technique that
is a much improved elimination method.

First let us identify the set of variables to be eliminated. Let the input system be of the
form

P = {(x, u) ∈ R
n1+n2 |Ax + Bu ≤ b}

where u is the set to be eliminated. The projection of P onto x or equivalently the effect of
eliminating the u variables is

Px = {x ∈ R
n1 |∃u ∈ R

n2 such that Ax + Bu ≤ b}.
Now W , the projection cone of P , is given by

W = {w ∈ R
m |Btw = 0, w ≥ 0}.

A simple application of Farkas Lemma yields a description of Px in terms of W .
Projection lemma Let G be any set of generators (e.g. the set of extreme rays) of the

cone W . Then Px = {x ∈ R
n1 | (gA)x ≤ gb ∀g ∈ G}.

The lemma, sometimes attributed to Cerkinov, reduces the computation of Px to enu-
merating the extreme rays of the cone W or equivalently the extreme points of the polytope
W ∩ {w ∈ R

m | ∑m
i=1 wi = 1}. We will see in a later section that Fourier elimination can be

used to solve this problem.

2.3 Polynomial solvability

Theoretical computer science has provided us with frameworks for the classification of the
inherent complexity of a problem class such as linear programming problems along with
precise ways of analysing the time and space requirements of specific algorithms. The notion
of “polynomial solvability” of linear programming has become synonymous with “tractabil-
ity”. The following definitions are useful in studying the post 1970s literature on linear
programming:

• Encoding The length of a problem instance is defined to be the length of the description
of the problem instance to a Turing Machine with the rational numerical coefficients
encoded in binary fixed base notation.

• Polynomial time solvability A problem class is said to be polynomial time solvable or in
PTIME if there is an algorithm for this problem that runs in time that is bounded above
by a polynomial function of the length of encoding of the problem instance. Note that
the space used by the algorithm would also need to be bounded by a polynomial in the
length of the encoding.

• Arithmetic model A more natural and realistic model of computation is to consider ele-
mentary arithmetic operations such as addition, subtraction, multiplication, division and
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comparison as atomic operations and we use the total count of the number of such arith-
metic operations as the time complexity of an algorithm.

• Strongly polynomial time We say that an algorithm is strongly polynomial time if it is
a polynomial space algorithm and the number of arithmetic operations it performs is
bounded by a polynomial function of the number of input numbers. So this definition
mixes the Arithmetic and Turing models of computation.

Much of the remaining sections of this paper will focus on polynomial time solvability of
linear programming. Let us first examine Fourier’s elimination method from this perspective.
It is important to note that Fourier’s algorithm is independent of the order in which the
variables are eliminated. The number of steps necessary to eliminate all variables, however,
may vary depending on this order.

Fourier elimination solves our LP problem instance, however it is not polynomial. In the
worst case, the Fourier eliminationmethod can be quite inefficient. To perform an elimination
over n inequalities leads to at most n2/4 inequalities in the output. Running k successive steps
leads to (n2/4)k . This explosion in the number of inequalities can be observed on a wide
variety of problems in practice and is a manifestation of the problem of intermediate swell
that plagues many algorithms in symbolic computation.

Let us re-examine the stopping conditions of Fourier elimination in terms of b̃.

(i) (b̃ � 0): the system Ax ≤ b is unsolvable.
(ii) (Undefined b̃): When all the inequalities are deleted in the first step itself while trying to

eliminate some variable, b̃ is undefined and the system Ax ≤ b is strongly solvable.
(iii) (min b̃i > 0): the system Ax ≤ b is solvable and the polyhedron is full-dimensional.
(iv) (min b̃i = 0): the system Ax ≤ b is solvable and contains implicit equations.

We will now take a closer look at these stopping conditions and see that they each provide
useful insights on the structure of the underlying polyhedron {x ∈ R

n : Ax ≤ b}

2.4 Unsolvability and Farkas lemma

When presented with an unsolvable system of linear inequalities, Farkas lemma is a simple
consequence of analysing the stopping condition of Fourier elimination. The lemma states
the remarkable property that the unsolvability of a system of linear inequalities is directly
related to the solvability of a ‘dual’ system.

A form of Farkas lemma that will be used in a later section states that:

Lemma 2.1 Exactly one of the alternatives

1. ∃x ∈ R
n+ : Ax ≤ b 2. ∃y ∈ R

m+ : yt A ≥ 0, ytb < 0

is true for any given real matrices A and b.

Proof 1 is equivalent to the system of inequalities Ax ≤ b and −I x ≤ 0 where I is a n ∗ n
identity matrix. Let

A∗ =
(
A
I

)
(3)

and

b∗ =
(
b
0

)
. (4)

Let us analyse the case when Fourier elimination provides a proof of the unsolvability of a
given linear inequality system A∗x ≤ b∗. The method clearly converts the given system into
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RA∗x ≤ Rb∗ where R is a non-negative matrix, RA∗ = 0 and Rb∗ has at least one negative
component. Partition R = [R1 R2] corresponding to the partitioning of

A∗ =
(
A
I

)
. (5)

So RA∗ = 0 �⇒ R1A− R2 I = 0. Therefore there is some row of the non negative matrix
R, say r ∈ R

m+n+ , such that r A∗ = 0 and rb∗ < 0. Partitioning r = [r1 r2] corresponding to
the partitioning of A∗ as above leads to r A∗ = 0 �⇒ r1A − r2 I = 0. Since the elements
of the row vector r2 are non-negative, it follows that the row vector r1A ≥ 0. Similarly,
partitioning b∗ as above, we have that rb∗ < 0 �⇒ r1b < 0. Thus �1 �⇒ 2.

Next, we show that both 1 and 2 cannot be simultaneously true for fixed A and b. Assume
the contrary. We have x∗ ≥ 0, Ax∗ ≤ b and y∗ ≥ 0, y∗t A ≥ 0, y∗t b < 0. Nowmultiplying
Ax∗ ≤ b on the left by y∗t > 0 we have that y∗t Ax∗ ≤ y∗t b < 0. But since y∗t A ≥ 0
and x∗ ≥ 0 we have that the left hand side of the inequality y∗t Ax∗ ≤ y∗t b is ≥ 0 while
the right hand side is less than 0 which is a contradiction. This completes the proof of the
theorem. �

Geometric interpretation. Let ai be the i th column ofA. Farkas lemma states that exactly
one of the following statements is true:

1. ∃x1, x2, . . . , xn ∈ R : xi ≥ 0 ∀i and a1x1 + . . . + anxn ≤ b.
2. ∃y ∈ R

m+ : ati y ≥ 0 ∀i and bt y < 0.

The convex cone of the set {a1, a2, . . . , an} is represented by a1x1 + . . . + anxn where each
xi ≥ 0. Therefore, the first statement says that the vector b lies in this cone. The second
statement says that there exists a vector y such that the angle it makes with ai is at most 90◦
while the angle between y and b is greater than 90◦. The hyperplane which is normal to this
vector separates the vectors of the convex cone and the vector b.

Either

a1

a3a2

b

or

a1

a2

a3

Hyper − plane
b

.

2.5 Strong solvability

As defined earlier, a solvable system of inequalities is said to be strongly solvable if any
modification of the right hand side constants of the inequalities results in a solvable set. This
is a valuable property to detect since in one fell swoop we would have the answer to an entire
family of solvability problems. When this occurs, it is only due to the left hand side of the
inequalities, not the right hand side constants. Changing these constants does not modify the
outcome.

In the Fourier elimination method, the final b̃ may not be defined if all the inequalities are
deleted by the monotone sign condition while trying to eliminate some variable. In such a
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situation we declare the system Ax ≤ b strongly solvable. This is a valid conclusion since,
regardless of what b ∈ R

m is chosen, the last variable to be eliminated, say x j has only upper
(lower) bounds depending on whether it appears with a positive (negative) coefficient in all
the remaining inequalities. Thus for any set of values assigned to the other un-eliminated
variables, we can always choose a small (large) enough value for x j that solves the system.

In geometric terms, if the right hand side constants are modified, it corresponds to a trans-
lation of the hyperplane associated to the inequality. So the strong solvability property means
that any translation of those hyperplanes results in a new non-empty polyhedron. Another
geometric characterisation of strong solvability states that a system of linear inequalities
S = {Ax ≤ b} is strongly solvable if and only if the polyhedron P = {x : Ax ≤ b} contains
spheres of unbounded radii.

In the first example, after the first round of iteration (i.e. after eliminating x1), we had
obtained the following inequalities: x2 ≥ 3 and x2 ≥ 15

7 . As x2 appears with a positive
coefficient in all the inequalities, the Fourier’s algorithm returns the empty set. Hence the
system is actually strongly solvable.

2.6 Implicit equations

An important problem in symbolic computation with linear constraints is the identification
of implicit equations in a system of linear inequalities. In geometric terms, we need the affine
hull of the convex polyhedron represented by the linear inequalities. A linear combination is
affine when the multipliers add to 1 and the affine hull of a set of points is the collection of
all affine combinations of the set.

Jean-Louis Laseez andMichael Maher made the interesting observation that the detection
of implicit equations by Fourier elimination is easily accomplished. Run the Fourier method
until all variables have been eliminated. The implicit equalities are exactly those original
constraints used in producing b̃i = 0.When S is solvable and theFourier’s algorithmproduces
at least one tautology of the form 0 ≤ 0, implies that S contains at least two inequalities which
imply at least one equality. If an initial set of constraints does not contain implicit equalities,
none of the sets generated by the elimination of variables will contain implicit equalities.
In a geometric context, the projections of a full dimensional polyhedral set are also full
dimensional. This helps avoid unnecessary computation in a problem of redundancy removal.

This is best illustrated through an example.

Example Consider the system S of linear inequalities

{2x1 − x2 + x3 ≤ 2, x1 − 3x2 ≤ −2,−x1 + x2 ≤ 0, x2 ≤ 1}
To eliminate x1, the second and third inequalities generate the fifth inequality 2 ≤ 2x2.
While eliminating x2, the fourth and the fifth inequalities generate 0 ≤ 0 which results in
mini {b̃i } = 0.Thus the second, third and fourth inequalities actually define implicit equations,
x1 = 1 and x2 = 1. Continuing further, we get {x3 ≤ 1}. The polyhedron P is thus defined
by {(x1, x2, x3) : x1 = x2 = 1, x3 ≤ 1.} The affine hull of P = {(x1, x2, x3) : x1 = x2 = 1}
(Fig. 1) (Original figure taken from “The French Connection” by Vijay Chandru and M R
Rao, Resonance, Journal of Science Education, Vol 3, Issue 10, October 1998, pp 26–40).

2.7 An application of the Fourier method

The backbone of the famous Hochbaum and Naor algorithm Hochbaum and Naor (1994) is
the Fourier–Motzkin elimination method. The algorithm solves feasibility in linear programs
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Fig. 1 Graph represented by S

with up to two variables per inequality derived directly from Fourier’s method. The running
time isO(mn2 logm)wherem and n are the number of variables and inequalities respectively.
In general, the algorithmdoes not run in polynomial time becausewhile eliminating variables,
exponential number of inequalities could be generated. However, it is very efficient for linear
programs where each inequality may contain at most two variables.

An equivalent representation of the linear program is by the graph G = (V , E), where
V = {x0, x1, . . . , xn} and an edge between vertex xi and x j represents the set of inequalities
involving them. The vertex x0 is needed to represent those inequalities that contain just one
variable.

The main feature that allows for the efficient implementation of the Fourier–Motzkin
algorithm is the following: the set of inequalities that correspond to an edge between xi and
x j is represented in the (xi , x j ) plane as two envelopes, an upper and a lower. The feasible
region of xi and x j is in between the two envelopes and each envelope is a piecewise linear
function that can be represented by its breakpoints.

At step i of the Fourier elimination, the algorithm is as follows:
Let Gi denote the graph corresponding to the linear program Ei (set of inequalities at

step i which will only contain variables xi , . . . , xn) and xmin
i (xmax

i ) denote the minimum
(maximum) feasible values of xi . The procedure given by Nimrod Megiddo (1983) gives an
efficient way to find xmin

i and xmax
i .

1. Let the neighbours of xi in the graph Gi be xi1 , . . . , xid and Bj (1 ≤ j ≤ d) denote the
set of breakpoints of the edge (xi , xi j ) projected on the xi coordinate.

2. Merge the sorted sequences Bi into a sorted sequence B where the sorted sequence is
b1, . . . , bk .

3. A binary search is performed on B for either
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(a) a breakpoint bl ∈ B such that xmin
i ≤ bl ≤ xmax

i or
(b) an interval [bl , bl+1] (1 ≤ l ≤ k) such that bl < xmin

i and xmax
i < bl+1.

4. In step 3a, xi = bl and contracted with vertex x0 in graph Gi . In step 3b, the number
of inequalities on each edge adjacent to xi is reduced to at most two. Now, the Fourier
method is applied to variable xi .

The number of breakpoints on an edge is at mostO(m) and the complexity of eliminating
a variable in the algorithm is O(mn logm). Hence, the complexity of the entire algorithm is
O(mn2 logm).

The same paper by Hochbaum and Naor (1994) also presents an application of the Fourier
algorithm to identify fat polytopes i.e. whether it contains a sphere circumscribing a unit
hypercube. Since a unit hypercube must contain at least one integer lattice point, an integer
feasible point is found by rounding the coordinates of the center of the sphere to the nearest
integer, however there is a possibility that there may exist a feasible integer point but the
polytope does not contain a large enough sphere. To avoid this problem, all constraints are
shifted by a distance of r . In order to obtain a sphere large enough to contain a unit hypercube,
set r = √

n/2. Consequently, an integer feasible point can be found out in O(mn2 logm)

time.

3 Linear programming: a brief description of the simplexmethod

A pointed polyhedron is one that does not contain a line that is infinite in both directions. The
feasible region of a canonical linear program K = {x ∈ R

n : Ax = b, x ≥ 0} is a pointed
convex polyhedron. Hence, if K �= ∅ then K has at least one extreme point.

Theorem of linear programming states that if min {cx : Ax = b, x ≥ 0} has an optimal
solution, then it has an optimal extreme point solution. A face of the polyhedronK is a lower
dimensional polyhedron contained in K defined by forcing a subset of x-variables to 0. The
adjacency graph of the polyhedron is a graph whose vertices are the extreme points of the
polyhedron and whose edges are the 1-dimensional faces of the polyhedron. The search for
an optimal solution to is a search over the extreme points or vertices of the graph. A simple
local improvement search strategy ofmoving from extreme point to an adjacent extreme point
until we get to a local optimum is nothing but the simplex method of linear programming
(Dantzig 1951, 1963). The local optimum also turns out to be a global optimum, because of
the convexity of the polyhedron K and the linearity of the objective function cx .

Procedure: Simplex (K, c)

0. Initialize:

• x0 := an extreme point of K
• k := 0

1. Iterative Step:

do
If for all edge directions Dk at xk, the objective
function is nondecreasing, i.e.,

cd ≥ 0 ∀ d ∈ Dk

123



Annals of Operations Research

then exit and return optimal xk.
Else pick some dk in Dk such that cdk < 0.
If dk ≥ 0 then declare the linear program unbounded in
objective value and exit.
Else xk+1 := xk + θk ∗ dk, where

θk = max {θ : xk + θ ∗ dk ≥ 0}
k := k + 1
od

2. End

We assumed that an extreme point x0 of the polyhedron K is available. A general technique
for generating a starting extreme point is to solve a Phase I model

min {v0 : Ax + bv0 = b, x ≥ 0, v0 ≥ 0}
for which (x, v0)T = (0, . . . , 0, 1) is a self-evident extreme point, and v0 = 0 at an
optimal solution of this model is a necessary and sufficient condition for the solvability of
Ax = b, x ≥ 0.

The source of non-determinism in the algorithm arises from geometric degeneracy. When
there are multiple feasible bases corresponding to an extreme point, the simplex method has
to pivot from basis to adjacent basis by picking an entering basic variable (a pseudo edge
direction) and by dropping one of the old ones. A wrong choice of the leaving variables may
lead to cycling in the sequence of feasible bases generated at this extreme point. The tech-
niques of Dantzig et al. (1955) and Charnes (1952) were first used to prove finite termination
of the simplexmethod. A clever method proposed by Bland (cf. Schrijver 1986) preorders the
rows and columns of the matrix A. In case of non-determinism in either entering or leaving
variable choices, Bland’s Rule just picks the lowest index candidate. All cycles are avoided
by this rule also. Bland’s rule has not been found to be efficient. Moreover, in practice cycling
does not seem to happen but stalling does. A technique due to Wolfe (1963) seems to avoid
stalling in practice.

Due to space limitations, one aspect of linear programming that we have not elaborated on
is the robustness issue or the effect of small perturbations of the data on the solution. There
are both practical issues of numerical stability in factorisations as well as algorithmic issues
of convergence that arise because of this. Most advanced textbooks in linear programming
will provide discussion of these issues.

3.1 Simplexmethod is worst-case exponential

There is no known variant of the simplex method with a worst-case polynomial guarantee on
the number of iterations. This despite the fact that both empirical (Bixby 1994; Dantzig 1963)
and probabilistic (Borgwardt 1987; Haimovich 1983) analyses indicate that the number of
iterations of the simplexmethod is just slightlymore than linear in the dimension of the primal
polyhedron. So the expected behaviour of the Simplex Method is strongly polynomial.

However, examples of exponential performance have been created. Klee andMinty (1972)
exploited the sensitivity of the original simplexmethod ofDantzig, to projective scaling of the
data, and constructed exponential examples for it. These examples were simple projective
distortions of the hypercube to embed long isotonic (improving objective value) paths in
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the graph. Scaling is used in the Klee–Minty construction, to trick the choice of entering
variable (based on most negative reduced cost) in the simplex method and thus keep it on an
exponential path. Later, several variants of the entering variable choice (best improvement,
steepest descent, etc.) were all shown to be susceptible to similar constructions of exponential
examples (cf. Schrijver 1986).

The ellipsoid method of Shor (1970), specialized for approximate convex optimization
by Nemirovsky and Yudin in 1972, was devised to overcome poor scaling in convex pro-
gramming problems and therefore turned out to be the natural choice of an algorithm to first
establish polynomial-time solvability of linear programming, as demonstrated by Khachiyan
in 1979. Later Karmarkar (1984) took care of both projection and scaling simultaneously
and arrived at a superior algorithm.

3.2 The linear programming duality theorem

Building on polarity in cones and polyhedra, duality in linear programming is a fundamental
concept which is related to both the complexity of linear programming and to the design of
algorithms for solvability and optimisation. If we take the primal linear program to be

(P) max
x∈Rn

{cx : Ax ≤ b, x ≥ 0}
there is an associated dual linear program

(D) min
y∈Rm

{bt y : At y ≥ ct , y ≥ 0}

and the two problems are related through several properties that we now recount. Note that
by symmetry the dual of (D) is (P).

Proposition 3.1 (Weak Duality) For any x̂ and ŷ feasible in (P) and (D) we have cx̂ ≤ bt ŷ.

Proof cx̂ ≤ ŷt Ax̂ ≤ ŷt b where the first inequality holds from (D)-feasibility of ŷ and non-
negativity of x̂ , and the second inequality follows from (P)-feasibility of x̂ and non-negativity
of ŷ. �

Note that if (P) is unbounded then (D) is infeasible and similarly if (D) is unbounded then
(P) is infeasible. Consequently both (P) and (D) cannot be unbounded. This however leaves
the possibility that both (P) and (D) are infeasible. An example of this possibility would be:
maximise 2x1 − x2 subject to x1 − x2 ≤ 1, −x1 + x2 ≤ −2, x1, x2 ≥ 0. See Vanderbei
(2015).

Proposition 3.2 If (P) has a finite optimal solution then (D) has a feasible solution.

Proof Suppose (P) has an optimal solution x∗ with cx∗ = z∗. Let z̄ > z∗. Then max{cx :
Ax ≤ b, cx ≥ z̄, x ≥ 0} has no feasible solution. Now consider the two inequality systems

(I) {Ax ≤ b, −cx ≤ −z̄, x ≥ 0}
(II) {yt A − λc ≥ 0, ytb − λz̄ < 0, y ≥ 0, λ ≥ 0}

By Farkas lemma, since (I) is not feasible, (II) must be feasible. Let ȳt and λ̄ be a feasible
solution to (II). Then

ȳt A − λ̄c ≥ 0, ȳt b − λ̄z̄ < 0, ȳ ≥ 0, λ̄ ≥ 0

There are two cases to consider:
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1. λ̄ = 0 : Now ȳt A ≥ 0 and ȳt b < 0. Now consider the pair of dual programs

(P1) max{0x : Ax ≤ b, x ≥ 0}
(D1) min{ytb : At y ≥ 0, y ≥ 0}

Since ȳt is feasible to (D1) and ȳt b < 0, it follows that (D1) is unbounded. Consequently
(P1) must be infeasible which is a contradiction to the assumption that (P) has a finite
optimum.

2 λ̄ > 0 : Since (II) is a homogeneous system, we can take λ̄ = 1. Now ȳt A ≥ c, ȳt b <

z̄, ȳ ≥ 0, λ̄ = 1. Clearly, ȳt is feasible to (D) and the proposition follows.

�
The weak duality condition gives us a technique for obtaining lower bounds for minimi-

sation problems and upper bounds for maximisation problems. Hence,

Corollary 3.1 The linear program (P) has a finite optimal solution if and only if its dual (D)
does.

If the linear programs have finite optima, the inequality of the weak duality relation can
be strengthened to an equality.

Theorem 3.1 (Strong duality) x∗ and y∗ are a pair of optimal solutions for (P) and (D)
respectively, if and only if x∗ and y∗ are feasible in (P) and (D) and cx∗ = bt y∗.

Proof Let x∗ and y∗ be a pair of feasible solutions to (P) and (D) respectively that satisfy
cx∗ = bt y∗. It follows from the weak duality proposition that x∗ and y∗ are a pair of optimal
solutions for (P) and (D) respectively.

To prove the ‘only if’ direction of the theorem we assume that (P) and (D) are optimised
by x∗ and y∗ respectively. Consider the two inequality systems.

(I) {Ax ≤ b,−At y ≤ −ct bt y − cx ≤ 0, −x ≤ 0,−y ≤ 0}.
(II) {Atα − ctλ ≥ 0,−Aβ + bλ ≥ 0, btα − cβ < 0, α ≥ 0, β ≥ 0, λ ≥ 0}

From Farkas Lemma, we know that (I) or (II) must be solvable but not both. We demonstrate
below that (I) must be solvable since (II) is unsolvable. But then it follows that (x∗, y∗) must
solve (I) for if it does not, then it follows that bt y∗ > cx∗. Suppose now (x̄, ȳ) solves (I),
then bt ȳ ≤ cx̄ and this implies that cx̄ would get above cx∗ or bt ȳ would get below bt y∗.
Since x̄ and ȳ are (P) and (D) feasible, this would contradict the optimality of x∗ and y∗.

It therefore remains to show that the inequality system (II) is unsolvable. Suppose (α, β, λ)

is a solution to (II). Let us consider two cases below:

1. (λ = 0): In this case Atα ≥ 0,−Aβ ≥ 0, btα − cβ < 0, α ≥ 0, β ≥ 0. If btα ≥ 0 then
cβ > 0 and we have

(P1) max {cβ : Aβ ≤ 0, β ≥ 0}
(D1) min {0α : Atα ≥ ct , α ≥ 0}

where (P1) is unbounded. Then (D1) should be infeasible which contradicts the assump-
tion that (D) is feasible. Conversely if btα < 0 then we have

(P2) max {0β : Aβ ≤ b, β ≥ 0}
(D2) min {btα : Atα ≥ 0, α ≥ 0}

where (D2) is unbounded. Then its corresponding (P2) should be infeasible which is a
contradiction to the assumption that (P) is feasible. Therefore this case is ruled out.
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2. (λ > 0): Since system (II) is homogeneous, we may as well take λ = 1. But then (β, α)
are feasible in (P), (D) with btα − cβ < 0 which is impossible since it violates weak
duality. Hence this case is also ruled out. �

Remark From the above proof it is evident that we can simultaneously optimise (P) and
(D) by solving the system of inequalities (I). Therefore the solvability of linear inequalities
subsumes linear optimisation.

The strong duality condition above gives us a good stopping criterion for optimisation
algorithms. It would be useful to have constructions for moving from dual to primal solutions
and vice-versa. The necessary and sufficient conditions for optimality which follow from
strong duality as given below, provide just that.

Complementary slackness: x∗ and y∗ are a pair of optimal solutions for (P) and (D)
respectively, if and only if x∗ and y∗ are feasible in (P) and (D) and (Ax∗ − b)t y∗ =
(At y∗ − c)t x∗ = 0.

Note that the properties above have been stated for linear programs in a particular form.
The reader should be able to check, that if for example the primal is of the form

(P′) min
x∈Rn

{cx : Ax = b, x ≥ 0}

then the corresponding dual will have the form

(D′) max
y∈Rm

{bt y : At y ≤ ct }.

The tricks needed for seeing this are that any equation can be written as two inequalities, an
unrestricted variable can be substituted by the difference of two non-negatively constrained
variables and an inequality can be treated as an equality by adding a non-negatively con-
strained variable to the lesser side. Using these tricks, the reader could also check that the
dual construction in linear programming is involutory (i.e. the dual of the dual is the primal).

3.3 Implicit and parametric representations

A system of linear inequalities of the form Ax ≤ b represents a convex polyhedron K ,
implicitly. It is implicit in that we are given the bounding half-spaces and the representation
does not directly provide a scheme for generating points in K . An explicit or parametric
representation of K would require the lists of extreme points {p1, p2, . . . , pK } and extreme
rays {r1, r2, . . . , r L } of K . And then the convex multipliers {α1, α2, . . . αK } and the positive
cone multipliers {μ1, μ2, . . . ., μL } are the parameters that give us the representation:

K =
⎧⎨
⎩x ∈ R

n : x =
K∑
i=1

αi p
i +

L∑
j=1

μ j r
j ,

K∑
i=1

αi = 1, αi ≥ 0 ∀i, μ j ≥ 0 ∀ j

⎫⎬
⎭

An organic role of Fourier elimination is in obtaining an implicit representation of a convex
polyhedron fromaparametric representation. The parametric representation above is a system
of linear equations and inequalities in x, α and μ. If we eliminate the α and μ variables from
this system, we would obtain an implicit representation.

The converse problem of generating a parametric representation from a given implicit
representation of a polyhedron can also be attacked with Fourier elimination. In an intriguing
paper, Paul Williams (1986) shows that a dual interpretation of Fourier elimination yields a
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scheme for enumerating the extreme rays and extreme points of a polyhedron defined by a
system of linear constraints {Ax ≤ b, x ≥ 0}.

Picking an arbitrary ct ∈ R
n , we start with the dual pair of linear programs

(P) max {cx : Ax ≤ b, x ≥ 0}
(D) min {bt y : At y ≥ ct , y ≥ 0}

Now introduce a new variable z in (D) to get

(D′) min {z : z − bt y ≥ 0, At y ≥ ct , y ≥ 0}
The linear program dual to (D′) is given by

(P ′) max {cx : Ax − bα + β = 0, α = 1, x ≥ 0, α ≥ 0, β ≥ 0}
Using Fourier elimination on the constraints of (D′) we eliminate all y variables and are left
with bounds (lower and upper) on z. Fourier elimination on (D′) takes positive combinations
of the constraints to eliminate y variables but at the cost, in general, of many new constraints.
In (P′) this corresponds to column operations to eliminate rows (constraints) at the cost of
generating many new columns (variables).

At the completion of the elimination of y variables in (D′), we have all constraints of
(P′) eliminated except for the transformed equation representing the original normalising
constraint α = 1 and non negativity restrictions on the transformed variables. The extreme
points and rays of the polyhedron defined by a single equation on non negative variables can
be simply read off. If we revert the column operations to interpret these extreme points and
rays in terms of the original x variables we will obtain the extreme points and rays of the
polyhedron defined by the constraints of (P). Unfortunately, as seen in the example below,
we may also obtain some non-extreme solutions which need to be recognised and discarded.

To get the extreme points of the polyhedron

K = {(x1, x2) : −x1 + 2x2 ≤ 3, 2x1 − 7x2 ≤ −15, x1 ≥ 0, x2 ≥ 0}
we define the pair of linear programs (P′) and (D′) as above. Using Fourier’s method to
eliminate the y variables in (D′) we wend up with the transformed version of (P′) whose
constraints have the form

{2v1 + v2 + 0v3 + 0v4 = 1, v j ≥ 0, j = 1, 2, 3, 4}.
The extreme points are read off as (1/2, 0, 0, 0) and (0, 1, 0, 0) and the two extreme rays as
(0, 0, 1, 0) and (0, 0, 0, 1). Inverting the column operations we obtain (3, 3) and (10, 5) as
the candidate extreme points of K , and (7, 2) and (2, 1) as the candidate extreme rays of K .
(10, 5) is not a corner point for K .

As mentioned earlier, working with the extreme points of the feasible region of a linear
program is crucial since if an optimal solution exists then it does so at the extreme point.
Searching through all the extreme points for the most optimal one is highly laborious. The
simplex method is one way to execute a partial search to zero in on an optimal extreme point.

4 Khachiyan’s method: the ellipsoid algorithm for linear programming

The Ellipsoid Algorithm of Shor (1970), specialized for approximate convex optimization
by Nemirovsky and Yudin in 1972, gained prominence in the late 1970s when Haĉijan
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(pronounced Khachiyan) Haĉijan (1979) showed that this convex programming method spe-
cialises to a polynomial-time algorithm for linear programming problems. This theoretical
breakthrough naturally led to intense study of this method and its properties. The direct
theoretical consequences for combinatorial optimisation problems was independently doc-
umented by Padberg and Rao (1981), Karp and Papadimitriou (1982), and Grötschel et al.
(1982). The ability of this method to implicitly handle linear programs with an exponential
list of constraints and maintain polynomial-time convergence is a characteristic that is the
key to its applications in combinatorial optimisation.

Let us consider the problem of testing if a polyhedronQ ∈ R
d , defined by linear inequal-

ities, is nonempty. For technical reasons let us assume that Q is rational, i.e., all extreme
points and rays ofQ are rational vectors or equivalently that all inequalities in some descrip-
tion ofQ involve only rational coefficients. The ellipsoid method does not require the linear
inequalities describing Q to be explicitly specified. It suffices to have an oracle representa-
tion of Q. Several different types of oracles can be used in conjunction with the ellipsoid
method (Grötschel et al. 1988; Karp and Papadimitriou 1982; Padberg and Rao 1981. We
will use the strong separation oracle described below.

Oracle: Strong Separation (Q, y)
Given a vector y ∈ R

d, decide whether y ∈ Q, and if not
find a hyperplane that separates y from Q; more
precisely, find a vector c ∈ R

d such that
cT y < min{cT x : x ∈ Q}.

The ellipsoid algorithm initially chooses an ellipsoid large enough to contain a part of
the polyhedron Q if it is nonempty. This is easily accomplished because we know that if Q
is nonempty then it has a rational solution whose (binary encoding) length is bounded by
a polynomial function of the length of the largest coefficient in the linear program and the
dimension of the space.

The center of the ellipsoid is a feasible point if the separation oracle tells us so. In this
case, the algorithm terminates with the coordinates of the center as a solution. Otherwise,
the separation oracle outputs an inequality that separates the center point of the ellipsoid
from the polyhedron Q. We translate the hyperplane defined by this inequality to the center
point. The hyperplane slices the ellipsoid into two halves, one of which can be discarded.
The algorithm now creates a new ellipsoid that is the minimum volume ellipsoid containing
the remaining half of the old one. The algorithm questions if the new center is feasible and
so on. The key is that the new ellipsoid has substantially smaller volume than the previous
one. When the volume of the current ellipsoid shrinks to a sufficiently small value, we are
able to conclude thatQ is empty. This fact is used to show the polynomial time convergence
of the algorithm.

Ellipsoids in R
d are denoted as E(A, y) where A is a d × d positive definite matrix and

y ∈ R
d is the center of the ellipsoid E(A, y).

E(A, y) =
{
x ∈ R

d
∣∣∣ (x − y)T A−1(x − y) ≤ 1

}
.

The ellipsoid algorithm is described on the iterated values, Ak and xk , which specify the
underlying ellipsoids Ek(Ak, xk).
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Procedure: Ellipsoid (Q)

0. Initialize:

• N := N (Q) (comment: iteration bound)
• R := R(Q) (comment: radius of the initial

ellipsoid/sphere E0)
• A0 := R2 I
• x0 := 0 (comment: center of E0)
• k := 0

1. Iterative Step:

while k < N
call Strong Separation (Q, xk)
if xk ∈ Q halt
else hyperplane {x ∈ R

d | cT x = c0} separates xk from Q
Update

b := 1√
cT Akc

Akc

xk+1 := xk − 1
d+1b

Ak+1 := d2

d2−1
(Ak − 2

d+1bb
T )

k := k + 1
endwhile

2. Empty Polyhedron:

• halt and declare “Q is empty”

3. End

The crux of the complexity analysis of the algorithm is on the a-priori determination of
the iteration bound. This in turn depends on three factors- the volume of the initial ellipsoid

E0, the rate of volume shrinkage ( vol(Ek+1)
vol(Ek )

< e− 1
(2d) ) and the volume threshold at which we

can safely conclude thatQmust be empty. The assumption ofQ being a rational polyhedron
is used to argue that Q can be modified into a full-dimensional polytope without affecting
the decision question (“Is Q nonempty?”). After careful accounting for all these technical
details and some others (e.g., compensating for the round-off errors caused by the square root
computation in the algorithm), it is possible to establish the following fundamental result:

Theorem 4.1 There exists a polynomial g(d, φ) such that the ellipsoid method runs
in time bounded by T g(d, φ) where φ is an upper bound on the size of linear inequali-
ties in some description of Q and T is the maximum time required by the oracle Strong
Separation(Q, y) on inputs y of size at most g(d, φ).

The size of a linear inequality is just the length of the encoding of all the coefficients
needed to describe the inequality. A direct implication of the theorem is that solvability of
linear inequalities can be checked in polynomial time if strong separation can be solved
in polynomial time. This implies that the standard linear programming solvability question
has a polynomial-time algorithm (since separation can be effected by simply checking all
the constraints). Happily, this approach provides polynomial-time algorithms for much more
than just the standard case of linear programming solvability. The theorem can be extended to
show that the optimisation of a linear objective function overQ also reduces to a polynomial
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number of calls to the strong separation oracle on Q. A converse to this theorem also holds,
namely separation can be solved by a polynomial number of calls to a solvability/optimisation
oracle (Grötschel et al. 1988). Thus, optimisation and separation are polynomially equivalent.

5 Karmarkar’s interior point method

The announcement of the polynomial solvability of linear programming followed by the
probabilistic analyses of the simplex method in the early 1980s left researchers in linear
programming with a dilemma. We had one method that was good in a theoretical sense but
poor in practice and another thatwas good in practice (and on average) but poor in a theoretical
worst-case sense. This left the door wide open for a method that was good in both senses.
Narendra Karmarkar closed this gap with a breathtaking new projective scaling algorithm.
Many investigations followed to improve the implementations of the interior point method
with so-called affine scaling variants of Karmarkar’s algorithm. These were shown to be
related to earlier work of Dikin. Researchers also noted how these affine scaling methods for
linear programming could be interpreted as generalisations of the simplex method, Stone and
Tovey (1991) and Chandru and Kochar (1985). Further work led to the successful predictor-
corrector primal–dual methods which turned out to be the really practical codes for large
scale problems. In retrospect, the new algorithm has been identified with a class of nonlinear
programming methods known as logarithmic barrier methods. Implementations of a primal–
dual variant of the logarithmic barrier method have proven to be the best approach at present.
The monogragh by Wright (1997) is dedicated to primal–dual interior point methods. It is a
variant of this method that we describe below.

It is well known that moving through the interior of the feasible region of linear program
using the negative of the gradient of the objective function, as the movement direction, runs
into trouble because of getting “jammed” into corners (in high dimensions, corners make up
most of the interior of a polyhedron). This jamming can be overcome if the negative gradient
is balanced with a “centering” direction. The centering direction in Karmarkar’s algorithm
is based on the analytic center yc of a full dimensional polyhedron D = {x : AT y ≤ c}
which is the unique optimal solution to

max

⎧⎨
⎩

n∑
j=1

ln(z j ) : AT y + z = c

⎫⎬
⎭ .

Recall the primal and dual forms of a linear program may be taken as

(P) min {cx : Ax = b, x ≥ 0}
(D) max

{
bT y : AT y ≤ c

}
.

The logarithmic barrier formulation of the dual (D) is

(
Dμ

)
max

⎧⎨
⎩bT y + μ

n∑
j=1

ln
(
z j

) : AT y + z = c

⎫⎬
⎭ .
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Notice that (Dμ) is equivalent to (D) as μ → 0+. The optimality (Karush–Kuhn–Tucker)
conditions for (Dμ) are given by

Dx Dze = μe

Ax = b

AT y + z = c ,

where Dx and Dz denote n × n diagonal matrices whose diagonals are x and z, respectively.
Notice that if we set μ to 0, the above conditions are precisely the primal–dual optimality
conditions; complementary slackness, primal and dual feasibility of a pair of optimal (P)

and (D) solutions. The problem has been reduced to solving the above equations in x, y and
z. The classical technique for solving equations is Newton’s method which prescribes the
directions

�y = −
(
ADx D

−1
z AT

)−1
AD−1

z (μe − Dx Dze)

�z = −AT�y

�x = D−1
z (μe − Dx Dze) − Dx D

−1
z �z . (6)

The strategy is to take one Newton step, reduce μ, and iterate until the optimisation is
complete. The criterion for stopping can be determined by checking for feasibility (x, z ≥ 0)
and if the duality gap (xt z) is close enough to 0. We are now ready to describe the algorithm.

Procedure: Primal-Dual Interior

0. Initialize:

• x0 > 0, y0 ∈ R
m, z0 > 0, μ0 > 0, ε > 0, ρ > 0

• k := 0

1. Iterative Step:

do
Stop if Axk = b, AT yk + zk = c and xTk zk ≤ ε.

xk+1 ← xk + αP
k �xk

yk+1 ← yk + αD
k �yk

zk+1 ← zk + αD
k �zk

/* �xk, �yk, �zk are the Newton directions from (6) */
μk+1 ← ρμk

k := k + 1
od

2. End

The primal–dual algorithm has been used in several large-scale implementations. For appro-
priate choice of parameters, it can be shown that the number of iterations in the worst-case is
O(

√
n log (ε0/ε)) to reduce the duality gap from ε0 to ε (Saigal 1995; Wright 1997). While

this is sufficient to show that the algorithm is polynomial time, it has been observed that the
“average” number of iterations is more like O(log n log (ε0/ε)). However, unlike the simplex
method we do not have a satisfactory theoretical analysis to explain this observed behavior.

The step sizes αP
k and αD

k are chosen to keep xk+1 and zk+1 strictly positive. The ability
in the primal–dual scheme to choose separate step sizes for the primal and dual variables is
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a major computational advantage that this method has over the pure primal or dual methods.
Empirically this advantage translates to a significant reduction in the number of iterations.

The stopping condition essentially checks for primal and dual feasibility and near com-
plementary slackness. Exact complementary slackness is not possible with interior solutions.
When the algorithm terminates with an interior solution, a post-processing step is usually
invoked to obtain optimal extreme point solutions for the primal and dual. This is usually
called the purification of solutions and is based on a clever scheme, a folklore idea in math-
ematical programming, described by Megiddo (1991).

As in the case of the simplex method, there are a number of special structures in the matrix
A that can be exploited by interior point methods to obtain improved efficiencies. Network
flow constraints, generalised upper bounds (GUB), and variable upper bounds (VUB) are
structures that often come up in practice and which can be useful in this context (Chandru
and Kochar 1986; Todd 1986).

6 Integer programming onmonotone inequalities

In a generalised network flow problem, each edge e = (u, v) has a positive “flow multiplier”
ae associated with it, i.e. if a flow of xe enters the edge at node u, then a flow of aexe exits
the edge at v.

6.1 Uncapacitated generalised transshipment problem

The uncapacitated generalised transshipment problem is defined on a generalised network
where demand and supplies are associated with the vertices and costs are associated with the
edges. The aim is to find a flow such that the excess/deficit at each vertex equals the desired
value of the supply/demand, and the sum over the edges of the product of the cost and the
flow is minimised.

Given a generalised network, consisting of a graph G = (V , E) and in(i) (out(i)) denote
the set of edges that go into (out) i , with flow multipliers ae and edge-costs ce (e ∈ E)

and supplies/demands bi , i ∈ V , we need to find a flow function x = (xe)e∈E to solve the
following:

Minimize
∑

e∈E cexe subject to
∑

e∈in(i) aexe − ∑
e∈out(i) xe = bi (i ∈ V ) and xe ≥ 0.

The dual can be stated as follows: to find π1, . . . , πn to solve:
Maximize

∑n
i=1 biπi subject to πi − aeπ j ≤ ce (e = (i, j) ∈ E).

A matrix A is said to be a pre-Leontief matrix if A has at most one positive entry per
column (Cottle and Veinott 1972). A system where, for every inequality, the two non-zero
coefficients have opposite signs (both At and −At are pre-Leontief) is called monotone. In
a monotone system, if all the variables are bounded, then there exists a solution where all
variables are maximised (or minimised) simultaneously.

The set of constraints of the dual of the uncapacitated generalised transshipment problem
is monotone. Adler and Cosares (1991) reduced this problem, where only demand nodes (or
only supply nodes) are present, to a single solution of a monotone system. Their algorithm is
based on solving the dual linear programming problem. They showed that these instances can
be solved by using one application ofMegiddo’s algorithm. Cohen andMegiddo’s algorithms
(1991, 1993, 1994) improve the running time and the uncapacitated generalised transshipment
problem with only source nodes (demand nodes) can be solved in an expected running time
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of O(n3 log n + mn logm log3 n + mn log5 n) and a deterministic time of O(mn logm +
mn2 log2 n).

The algorithms of Cohen and Megiddo (or the algorithm of Adler and Cosares) compute
the simultaneous maximum or minimum point. Hence they do not solve the uncapacitated
generalised transshipment problems where both supply and demand nodes are present.

6.2 Generalised circulation

Given a generalised network G = (V , E) with a distinguished vertex s and capacities
ci j ≥ 0 associated with edges, the generalised circulation problem is to find a feasible flow,
i.e., xi j ≥ 0 which satisfies the flow conservation constraint

∑
j xi j − ∑

j a ji x ji = 0 for
i �= s and maximises the excess at s, defined as

∑
j xs j − ∑

j a js x js .
The best known time bound for this problem is due to Vaidya (1989), which relies on

theoretically fast matrix multiplication algorithms. The existence of a strongly polynomial
algorithm for this problem is still an open question and is a problem of special interest
because it is one of the simplest class of linear programming problems which does not yet
have a strongly polynomial algorithm. Cohen and Megiddo’s algorithm computes a feasible
generalised flow whose excess approximates the maximum excess to any constant factor.
This algorithm is based on iterative calls to an algorithm for monotone systems.

7 Conclusion

This primer on linear programming has hopefully conveyed to the reader a quick view of the
historical drama of the field of linear optimisation as it played out in the second half of the
twentieth century. It is significant that the advances in computing technologywas a concurrent
drama that, riding on Moore’s law of semiconductor hardware, made the efficient solution of
realistic models of many engineered and societal systems possible. Human progress based
on these advances in fundamental automation has been the foundation on which we have
now reached the second machine age where decision sciences are now creating ubiquitous
machine intelligence applications at astonishing speed.

In today’s optimisation software platforms likeGurobi Optimizer 7.0, the choice of solvers
for linear programming is between the simplex methods and interior point methods. The
characteristics of the two classes of solvers are a bit different as we have learned in this
primer and the nature, the size and characteristics of the application will dictate the choice
of algorithms to be invoked. It may not be far fetched to assume that there may be a machine
learning based expert system that manages this choice of solvers in the near future.

Another future direction for the field may be the era of NoSQL databases that are rapidly
gaining credence. The ability to run linear programming in these distributed and real-time
paradigms of cyber physical systems would be a new chapter in a future primer.
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