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Abstract— The problem of estimating the heart rate (HR)
from a facial video is considered. A typical approach for this
problem is to use independent component analysis (ICA) on
the red, blue, green intensity profiles averaged over the facial
region. This provides estimates of the underlying source signals,
whose spectral peaks are used to predict HR in every analysis
window. In this work, we propose a maximum likelihood
formulation to optimally select a source signal in each window
such that the predicted HR trajectory not only corresponds
to the most likely spectral peaks but also ensures a realistic
HR variability (HRV) across analysis windows. The likelihood
function is efficiently optimized using dynamic programming in
a manner similar to Viterbi decoding. The proposed scheme for
HR estimation is denoted by vICA. The performance of vICA
is compared with a typical ICA approach as well as a recently
proposed sparse spectral peak tracking (SSPT) technique that
ensures that the predicted HR does not vary drastically across
analysis windows. Experiments are performed in a five fold
setup using facial videos of 15 subjects recorded using two
types of smartphones (Samsung Galaxy and iPhone) at three
different distances (6inches, 1foot, 2feet) between the phone
camera and the subject. Mean absolute error (MAE) between
the original and predicted HR reveals that the proposed vICA
scheme performs better than the best of the baseline schemes,
namely SSPT by -8.69%, 52.77% and 8.00% when Samsung
Galaxy phone was used at a distance of 6inches, 1foot, and
2feet respectively. These improvements are 12.13%, 13.59%
and 18.34% when iPhone was used. This, in turn, suggests that
the HR predicted from a facial video becomes more accurate
when the smoothness of HRV is utilized in predicting the HR
trajectory as done in the proposed vICA.

I. INTRODUCTION

Heart Rate (HR) is an important index of a person’s health
and well-being. HR has conventionally been obtained from
the electrocardiograph (ECG) [1], which is contact based
and requires several electrodes to be attached to the skin.
On the othr hand, for non-contact monitoring of HR, the
photoplethysmography (PPG) is well-known as it provides
blood volume pulse [2]. In PPG, dedicated source of light is
illuminated on subject’s skin and the amount of light reflected
is measured. Imaging photoplethysmography (iPPG), is a
variation of PPG in which the dedicated source of light is
replaced by a camera in ambient light conditions. In other
words, the HR is estimated from the video of a subject’s
face captured by the camera. Although iPPG signal can be
obtained from various parts of the body, face is preferred
since it is easily accessible. It has been shown that iPPG
can provide a low-cost and comfortable way to capture
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human vital signs from the facial video captured by ordinary
cameras in the ambient light conditions [3].

In the work by Poh et al. [4], the HR is estimated from
facial video using the significant peak in the second source
signal obtained after performing independent component
analysis (ICA) on the average RGB intensity profiles in the
facial video. There have been several attempts to improve
upon it in a number of ways including selection of specific
regions of the face [5], illumination rectification, non-rigid
motion removal [6]. Attempts have been made to use K
Nearest Neighbour classifier and linear regression step in
addition to ICA [7], as well as Support Vector Machine
[8] to improve the HR prediction from the facial videos.
Takano et al. [9] performed a first order derivative and
autoregressive spectral analysis on facial videos. In all the
above works, HR is estimated independently in each analysis
window of the data, thus making it less robust to artifacts
in the video. Gaonkar et al. [10] proposed sparse spectral
peak tracking (SSPT) to address such drawback. In SSPT, a
sparse representation of the spectrum of each source signal
is obtained using the top few significant peaks and these are
used for HR estimation by exploiting the slow-varying nature
of HR.

In this work, we propose a maximum likelihood (ML)
formulation for HR prediction by exploiting the heart rate
variability (HRV) across analysis windows. The proposed
formulation optimally selects a source signal in each window
such that the predicted HR trajectory not only corresponds to
the most likely spectral peaks but also ensures smoothness in
the HRV across analysis windows. The likelihood function is
efficiently solved using dynamic programming. Experiments
with facial videos from 15 subjects captured by two types
of phone cameras and three different camera-to-subject dis-
tances reveal that the mean absolute error in the HR predicted
using the proposed scheme is lower than that using the best
of the baseline schemes by ∼16.02% averaged across all
recording conditions indicating the benefit of the proposed
scheme. We begin with the description of the proposed ML
formulation.

II. PROPOSED MAXIMUM LIKELIHOOD FORMULATION
FOR HR ESTIMATION

The steps involved in estimating HR from facial video are
summarized in Fig. 1. At first, the facial region of interest
(ROI) is identified for all the frames in the video. In this
work, we follow the ROI as used in the work by Gaonkar et
al. [10]. The pixel intensities over the facial ROI are averaged
and temporal contours of the average intensity in the red (R),
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green (G) and blue (B) channels are obtained. Following this,
the ICA [11] is performed on the RGB intensity contours
and the underlying source signals are extracted. The spectra
of all source signals are analysed to estimate HR from
each underlying signal. The proposed approach exploits the
smooth nature in the HRV for estimating the HR from the
spectra of the source signals through a ML based formulation
which is described below:

Fig. 1. Block diagram describing major steps in the proposed vICA scheme

At first, the confidence value of HR estimated from each
source signal is calculated as: Let ck = [ck1 , c

k
2 , c

k
3 ]
T be

the HR estimated from the first, second and third source
signal respectively in the k-th window. Let Mk

j , j = 1, 2, 3
be the spectral magnitude corresponding to ckj . And let
Skj , j = 1, 2, 3 be the sum of magnitude squares of all
spectral components at frequencies in between 0.75Hz and
4Hz (frequencies corresponding to normal HR range of 45
bpm to 240 bpm) of j th source signal in k-th window. Then,
the confidence value corresponding to ckj is given by αkj .

αkj =
(Mk

j )
2

Skj
(1)

Let Hk denote the index of the true source signal from
which HR is estimated in k-th window. That is Hk =

m,m ∈ {1, 2, 3}. We assume P ( Hk = m)=
1

3
, ∀m. The

probability P km = Prob( Hk=m|ck), m = 1, 2, 3 is calculated
from confidence values.

P km = P ( Hk = m|ck) ∝ p(ck| Hk = m) (2)

,
confidence of ckm

Sum of confidences of 3 components of ck
(3)

=
αkm∑3
m=1 α

k
m

(4)

We consider maximizing the joint probability of the HR
of a participant in all windows instead of maximizing the
probability in each window separately. Let K be the total
number of windows.

P ( H1, H2, ..., HK |c1, c2, ..., cK) ∝
P (c1, c2, ..., cK | H1, H2, ..., HK)P ( H1, H2, ..., HK)

(5)

We assume that given the HR in all K windows, ck in these
windows are independent.Thus

P (c1, c2, ..., cK | H1, H2, ..., HK) =

K∏
k=1

p(ck| Hk) (6)

which can be obtained from (2), (3), and (4).

We assume that HR in the k-th window is conditionally
independent of the (k − 2)-th window and the ones before
given the HR of the (k−1)-th window. Then, using the chain
rule of probability, we can write P ( H1, H2, ..., HK)

= P ( Hk| H1, H2, ..., Hk−1)P ( H1, H2, ..., Hk−1)

(7)
= P ( Hk| Hk−1)P ( H1, H2, ..., Hk−1) = ... (8)

= P ( H1)

K∏
k=2

P ( Hk| Hk−1) ∝
K∏
k=2

P ( Hk| Hk−1) (9)

P ( Hk| Hk−1) is the probability of change of HR from
Hk−1 in the (k − 1)-th window to Hk in the k-th window.
We define P ( Hk = m| Hk−1 = m′) to be

P ( Hk = m| Hk−1 = m′) ∝ exp

(
−λ(ckm−c

(k−1)
m′ )2

)
(10)

where λ is a hyper parameter. This is to ensure that HR does
not change drastically in consecutive windows and change
slowly similar to realistic HR variation. Combining (6) and
(9) ,

P ( H1, H2, ..., HK |c1, c2, ..., cK) ∝
K∏
k=1

p(ck| Hk)

K∏
k=2

P ( Hk| Hk−1) (11)

The HR sequence is obtained by maximizing the probability
in (11) as follows:

{ Ĥk,∀k} = argmax
H1,..., HK

P ( H1, H2, ..., HK |c1, c2, ..., cK)

(12)
The optimization is solved using dynamic programming al-
gorithm in a manner similar to Viterbi decoding [12]. Hence
the proposed scheme is denoted by vICA. The algorithm
is as follows: Let Dm(k) be the probability of estimating
k heart rates for k windows assuming estimate for k-th
window is from m-th underlying source signal. Let the
back-tracking pointer in dynamic programming be denoted
by ξm(k), which underlying signal estimate for (k − 1)-
th window gave maximum probability Dm(k) . Dm(k) is
computed in a recursive manner and ξm(k) is stored in each
recursion of the dynamic programming as follows:

1) Initialization: Compute Dm(1) = P 1
m

2) Iteration: For 2 ≤ k ≤ K and 1 ≤ m ≤ 3 , compute
the following:

Dm(k) = max
1≤m′≤3

{Dm′(k − 1)× β(m,m′)}P km

ξm(k) = argmax
1≤m′≤3

{Dm′(k − 1)× β(m,m′)}

where β(m,m′) = P ( Hk = m| Hk−1 = m′) which
is the transition probability given by (10).

3) Backtracking:

ĤK = argmax
1≤m′≤3

Dm′(K)

Ĥk = ξ ˆHk+1
(k + 1), k = K − 1,K − 2, ..., 1.

ck
Ĥk
, 1 ≤ k ≤ K are declared as predicted HR.
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III. EXPERIMENTS AND RESULTS

A. Description of test data

The FAVIP corpus [10] is used for the experiments in
this work. It comprises facial video recordings of one-
minute duration taken from each of 15 subjects, of whom
12 are males and 3 are females of varying skin complexions
with their age ranging over 23-45 years. The facial videos
in FAVIP corpus were captured by Samsung Galaxy (S3)
smartphone and iPhone (3GS) at three different distances
between the camera and the subject, namely, 6 inches, 1 foot
and 2 feet. S3 videos are in mp4 format and 3GS videos are
in avi format. Both have a frame rate of 30 frames/second
with a resolution 1280×720 pixels. The encoding scheme
of S3 is h264(baseline) and that of 3GS is MJPEG. The
database also provides the actual heartbeat rate of the subject
obtained from the pulse oximeter.
B. Experimental setup

Each one minute video is analysed using 30 seconds
window with 1 second shift. HR candidate, ckj , (as described
in Section II) is obtained by finding the frequency corre-
sponding to the maximum peak amplitude of the spectrum
of the j-th underlying source signal in the range 0.75Hz
to 4Hz. In each analysis window, a HR value is predicted
using vICA. The experiment is carried out in five folds each
having a training phase and testing phase. In training phase,
the Mean absolute error (MAE) between the ground truth
HR and the one estimated using vICA is calculated for three
randomly chosen subjects for various values of the hyper
parameter λ in Eq. (10). λ is varied from 0 to 0.1 with
a step of 0.001. The value of λ which results in the least
error is used for evaluation of rest of the subjects. All 15
subjects appear once in the training phase across all folds. In
particular, for the five folds, the following subjects are used
in the training phase: fold#1 - (10,14,15), fold#2 - (11,12,13),
fold#3 - (1,5,7), fold#4 - (2,8,9), fold#5 - (3,4,6). Such an
experimental setup is chosen to examine the generalizability
of the hyper parameter λ on unseen test cases. If the λ is
subject specific and varies significantly across subjects, the
proposed vICA would fail to estimate HR for subjects on
which the λ has not been optimized.

The HR estimated using vICA is compared with that
obtained using two existing methods, namely ICA [4] and
SSPT based HR estimation [10]. In the former method,
HR is estimated always from the second source signal
obtained after performing ICA as proposed by Poh et al
[4]. That predicted HR is the frequency corresponding to
the maximum peak amplitude of the spectrum of the second
source signal in the range 0.75Hz to 4Hz. For SSPT, the
best choice of the window is determined on the training set
in each fold.

The HR is estimated using vICA, SSPT and ICA for
videos obtained using Samsung Galaxy and iPhone sepa-
rately. In order to examine the accuracy of the estimated HR
with varying distance between the camera and the subject,
the HR is estimated separately for three different distances.
Thus, the five fold experiment is conducted separately for

six recording conditions (S3 and 3GS each placed at three
different distances).

The performance of HR estimation is evaluated by the
MAE between the predicted HR and the ground truth HR in
all analysis windows in each test video. The ground truth HR
for each window is calculated as the average of HR values
in the respective window.

C. Results

The optimized values of λ in different folds are sum-
marized in Table I. It is clear from the table that the
optimal value of λ varies across six recording conditions
and five folds. However, the optimal λ value is found to be
greater than 0.05 in three among thirty cases (six recording
conditions × five folds) suggesting that a small value of λ
is usually a better choice than its high value in most of the
cases. Table II, III, IV show the MAE between the estimated
and the ground truth HR in all folds for three different
distances 6 inches, 1 foot, and 2 feet respectively. The tables
also show the average and standard deviation (SD) of the
MAE across all folds for all three schemes in case of both S3
and 3GS. The bold entries indicate the minimum value across
three schemes (vICA, SSPT and ICA) in every recording
condition. It is clear from the tables that the proposed vICA
has the least average MAE (followed by the SSPT) among
three schemes considered for both S3 and 3GS for all three
distances except for S3 at a distance of 6 inches, where SSPT
achieves a lower MAE over that of vICA.

The average MAE using vICA drops compared to that
using SSPT by -8.69%, 52.77% and 8.00% when S3 is
used at a distance of 6inches, 1foot, and 2feet respectively.
These drops are 12.13%, 13.59% and 18.34% when 3GS
is used. It is interesting to note that the performance of
vICA and SSPT are more similar and consistent across
different distances when videos using 3GS are considered
compared to when videos using S3 are considered. In fact,
the percentage drop in MAE from SSPT to vICA in the
case of S3 videos varies drastically with three distances. This
could be because of the differences in the encoding nature of
H.264 in S3 and MJPEG in 3GS. It is known that MJPEG
only compresses individual frames of video, while H.264
compresses across frames. Thus, the H.264 may distort the
HR related information in the pixel intensities to a greater
degree compared to that of MJPEG. From Table III and IV,
it is clear that the average MAE for both vICA and SSPT
increases when a distance of 2feet is considered compared
to that in the case of 1feet indicating that the HR prediction
performance drops as the distance between the camera and
the subject increases.

vICA and SSPT both use temporal smoothness but their
performance vary across subjects. To illustrate this, we
present predicted HR on subject where vICA does better
than SSPT and vice versa in Fig. 2. It is seen from the
figure that vICA performs better on both the phones in case
of subject15. However, in the case of subject4, both vICA
and SSPT are far from the ground truth value initially, with
SSPT prediction being relatively better. This could be due to
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noisy spectral peaks in the initial part of the recording. But
as analysis window position increases, both schemes select
the right peaks in case of 3GS whereas in S3, the SSPT fails
to do so.

It should be noted that λ=0 in the proposed formulation
would correspond to the case where no temporal smoothness
is imposed on the predicted HR trajectory. We found that the
MAE increases by 18.41%, 89.21% and 25.41% for three
distance cases using S3 when λ=0 is used compared to using
optimized λ. These increments in MAE are 0.8%, 53.44%
and 15.49% when 3GS is used. Increase in MAE due to λ=0
over optimized λ suggests that the predicted HR trajectory
becomes more accurate when the smooth nature of the HRV
is considered in the proposed formulation.

TABLE I
OPTIMIZED VALUE OFλ IN DIFFERENT FOLDS

Distance Phone Fold1 Fold2 Fold3 Fold4 Fold5

6 inches S3 0.004 0.001 0.009 0 0.02
3GS 0.003 0 0.001 0.027 0

1 foot S3 0.063 0.004 0.025 0.03 0.007
3GS 0.001 0.046 0.001 0.007 0.002

2 feet S3 0.041 0.04 0.008 0 0.018
3GS 0.016 0.005 0.053 0.093 0.001

TABLE II
MAE IN BPM FOR DIFFERENT METHODS AND PHONES FOR 6 INCHES

Fold S3 3GS
vICA SSPT ICA v ICA SSPT ICA

1 3.10 3.01 11.99 3.46 4.75 11.76
2 4.64 4.77 12.57 4.72 4.08 13.59
3 4.72 4.5 12.375 4.71 5.89 11.26
4 6.70 5.43 14.8 5.38 6.01 14.98
5 4.73 4.27 12.49 4.69 5.4 13.88

avg. 4.77 4.39 12.84 4.59 5.22 13.09
SD 1.27 0.88 1.11 0.69 0.81 1.54

TABLE III
MAE IN BPM FOR DIFFERENT METHODS AND PHONES FOR 1 FOOT

Fold S3 3GS
vICA SSPT ICA v ICA SSPT ICA

1 2.54 4.76 9.45 2.49 2.38 15.36
2 1.91 5.15 13.55 2.09 2.77 14.17
3 2.91 5.55 15.09 3.07 3.53 15.32
4 2.67 5.84 15.47 3.02 3.58 16.47
5 2.89 6.06 14.68 2.99 3.55 15.2

avg. 2.58 5.47 13.65 2.73 3.16 15.3
SD 0.40 0.52 2.45 0.42 0.55 0.81

TABLE IV
MAE IN BPM FOR DIFFERENT METHODS AND PHONES FOR 2 FEET

Fold S3 3GS
vICA SSPT ICA v ICA SSPT ICA

1 7.2 5.65 21.63 4.21 4.24 23.02
2 5.08 9.75 22.39 7.57 10.82 25.68
3 9.72 11.55 22.04 8.97 10.49 27.11
4 13.7 11.28 26.99 8.92 10.91 22.67
5 9.94 11.38 25.33 9.57 11.59 27.02

avg. 9.12 9.92 23.67 7.84 9.61 25.1
SD 3.24 2.49 2.35 2.16 3.02 2.13

IV. CONCLUSIONS

We propose a ML formulation for estimating HR from
facial video by exploiting the smooth nature of HRV and
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Fig. 2. Illustration of original and estimated HR using vICA and SSPT
for distance of 1 foot for subject15 and subject4.

show that it performs better than when the smoothness in
HRV is not exploited. The proposed scheme also performs
better than the best baseline scheme which performs spectral
peak tracking for HR estimation. While the proposed scheme
works on all the analysis windows together in the entire
video, it can be made real time by solving the optimization
in Eq. (12) in a manner similar to the online Viterbi decoder.
This is part of our future work.
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