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ABSTRACT

The rapid growth of sensing devices has opened up complex
event processing (CEP) for real-time analytics in Internet
of Things (IoT) Applications. While CEP has traditionally
been centralized, the increasing capabilities of edge devices
like smart phones, and the operational needs of low latency
and privacy makes it desirable to use both edge and the
Cloud for distributed CEP, the former often serving as event
sources. This paper motivates the need for real-time ana-
lytics across edge and the Cloud, formalizes an optimization
problem for bi-partitioning a CEP query pipeline based on
IoT application needs, and proposes an initial solution.

1. INTRODUCTION

The rapid proliferation of sensing elements, both in the
physical space (such as RFID tags, sensors, smart phones)
and virtual space (crowd-sourced data, social networks, vir-
tual agents) is generating immense volumes of data. Often,
these data sources are continuous in nature, contributing to
the velocity aspect of Big Data. This is best exemplified by
the fast evolving Internet of Things (IoT) domain 1 where
50 billion or more devices are expected to be interconnected
through the Internet. Extracting meaningful information
from these rapid streams of data requires both existing an-
alytics models, architectures and platforms to be extended,
and novel ones to be defined. In this regard, Complex Event
Processing (CEP) is a key data processing approach that fa-
cilitates easy specification of event patterns, and their fast
detection on high traffic event streams, to derive actionable
intelligence in real-time [1, 6].

CEP engines accept continuous queries that are defined
over event tuples and detect patterns within and across

1#IoTH: The Internet of Things and Humans, April 16,
2014, http://radar.oreilly.com/2014/04/ioth-the-internet-
of-things-and-humans.html
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events that arrive on a single or on multiple event streams.
They help translate low level information collected from het-
erogeneous sources at high rates into “complex events” that
identify situations of interest [8]. Traditional research and
development of CEP engines has been on single-machine,
shared memory platforms [5, 7]. There, event sources are
often moved centrally into Cloud data centers where inte-
grated processing of CEP queries takes place 2 [3].
In the new generation of IoT applications, the event sources

are often on edge devices like wireless sensors, smart power
meters, and smart phones, many of which are starting to
have non-trivial processing capabilities (e.g., Arduino and
Raspberry Pi boards for sensor network gateways, Android
Smart Phones). Given the need for rapid decision-making
on event pattern detection and the operational constraints ,
it makes sense to leverage the processing capabilities of the
edge devices rather than rely solely on centralized clouds.
Such requirements are often seen in healthcare applications
and public utilities in Smart Cities [10].

The focus of our work is to enable real-time analytics
on distributed systems that span across the edge and the
Cloud. As such, there is growing interest on distributed
CEP [2]. Like others [3], our aim is to model the distributed
query processing of blended streams across dynamic sys-
tems, without centralization on the Cloud. Similarly, our
goal is to minimize the end-to-end latency for executing the
query pipeline by minimizing the overheads in the entire
system, and not just on the edge devices or the Cloud.

However, we have several unique aspects. One is the use
of a distributed IoT infrastructure with heterogeneous re-
sources with varied computational capabilities for execut-
ing CEP pipelines. Secondly, CEP engines available on the
diverse resources have varying query expressivity that lim-
its their ability to handle specific query predicates. Lastly,
privacy constraints are enforced on event streams. These
varied Quality of Service (QoS) requirements and IoT in-
frastructure conditions are taken into consideration while
minimizing the latency for detecting patterns.

In the rest of the paper, we describe an IoT scenario
for water analytics and an architecture for distributed CEP
across a smart phone platform and the Cloud (§ 2). Further,
we motivate the need for intelligent partitioning of CEP
query pipelines to meet constraints unique to the IoT do-
main, and formalize it as an optimization problem (§ 3). We

2Amazon AWS Kinesis, http://aws.amazon.com/kinesis/
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propose initial solutions for this optimization problem, us-
ing both brute force and dynamic programming approaches
(§ 4), and then discuss future extensions to this work (§ 5).

2. CEP ACROSS EDGE AND THE CLOUD

Our motivating scenario is a Campus Smart Water IoT
infrastructure where water level, flow and quality sensors
(∼ 200) are deployed on water tanks, reservoirs and mainline
pipes, and connected to the Internet through Android-based
wireless gateway devices and smart phones. The sensors
emit events periodically ( 1

sec
∼ 1

min
) and report observa-

tions such as the water level in the tank, quality parame-
ters such as total dissolved solids, chlorine content, temper-
ature, and the volume of water flow. Analytics using CEP
queries are defined usually as a dataflow pipeline where data
pre-processing and quality checks precede aggregations or
detection of interesting situations, e.g., water overflow and
underflow due to pump operations, leakage of water due to
input-output flow imbalance, presence of contaminants, and
excess usage relative to campus average. Then, notifications
are send to operations managers or water consumers for sus-
tainable water usage.

Given the current scale, the CEP queries can be processed
either on the edge devices (here-on called edge) or centrally
on the Cloud without significant performance impact. But
as we scale the system, e.g., to a town or city wide deploy-
ment, or by including more number and types of sensors,
such as air quality and electricity usage, there is a need to
intelligently partition the CEP query execution across the
edge and the Cloud to meet these requirements. As we con-
sider location-based sensing of consumer activity, data own-
ership and security become concerns, and data generators
may impose restrictions on moving raw data to the Cloud.

As a proof of concept of executing CEP pipelines across
edge and the Cloud, we implement a light-weight CEP en-
gine, CEPLite, on the Android platform, complemented by a
full-featured Siddhi CEP engine on the Cloud [9]. Incoming
sensor events on the edge device (Android) are first catego-
rized based on their sensor source and placed into distinct
input queues of an EventBus 3 Publish-Subscribe (PubSub)
system. Subscribers, in this case the CEPLite engine, regis-
ter a subscription with the PubSub broker and are notified
asynchronously when events arrive. The subscribed events
are placed in input streams from which CEPLite Process-
ing Units (PU) poll for events. Each PU is responsible for
one query submitted to CEPLite, and operates over specific
input event streams in a SIMD manner. The PU’s query
capability is limited to filter, sequence, count windows and
simple aggregation, and it forwards the generated output
(complex) events over a stream to the next PU or the Cloud
having the next CEP query in the pipeline for processing.

Users submit their CEP query pipeline as a dataflow graph
(Fig. 1). A query planner distributes this pipeline across the
edge and the Cloud based on several factors, as discussed in
§ 3. These query segments are registered with CEPLite on
the edge device, and Siddhi on the Cloud. The communi-
cation between the edge device and the Cloud is done us-
ing a REST or a CoAP [4] service on the Cloud. CoAP is
intended for resource-constrained IoT devices to communi-
cate over the Internet with low overhead, using UDP and
optional multicast, and allows integration with traditional

3http://greenrobot.github.io/EventBus/
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3. PROBLEM FORMALIZATION

Preliminaries. The pipeline of queries executing over
event streams is represented as a directed acyclic graph (DAG)
of vertices and edges: G = 〈Q, S〉. Q = {qi} is the set of CEP
queries that are the vertices of the DAG, and S = {si | si =
〈qj , qk〉, qi, qj ∈ Q}, is the set event streams that connect
the output of query qi to the input on the next query qj ,
and form the directed edges of the DAG. Edges indicate the
data dependency between the queries, and events produced
from the output of a query pass along the stream as input
to the next query.

The queries that receive the initial input event streams
into the DAG are called the source queries, and are charac-
terized by having no incoming edges (though implicitly, an
edge indicating the input stream is incident on the queries).
The set of source queries is given by:

Q≻ = {q≻ | ∄ sj = 〈qi, q≻〉 ∈ S ∀ qi ∈ Q}

The queries that emit the final output event streams from
the DAG are called the sink queries, and these have no ex-
plicit outgoing edges. The set of sink queries is given by:

Q≺ = {q≺ | ∄ sj = 〈q≺, qi〉 ∈ S ∀ qi ∈ Q}

For simplicity, we assume in this paper that there can be
multiple source queries, i.e., |Q≻| ≥ 1, but there is only one
sink query so that the optimization goals of the pipeline are
scoped to outputs from this sink.

We define paths in the DAG which represent the logi-
cal flow of the events through the streams, from the source
queries to a unique sink query. Since we assume a single sink
query, we denote its path as p. This path offers an alterna-
tive, edge-centric view of the DAG. The following production
rules generate the path from path segments, where s⋆ ∈ S
and the ‘⊸’ symbol indicates a query that connects streams
on either of its sides. The path for the sink query is also the
maximal unique path for the DAG – it has every stream in
the DAG appearing exactly once (maximal) and we assert
a canonical ordering for comma-separated parallel streams
(unique). By definition, the path is acyclic for a DAG.

Source : ∅ ⊸ si
Sink : si ⊸ ∅

Sequential : si ⊸ sj
Parallel : Predecessor ⊸ (Segment, Segment+)
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⊸ Successor

Predecessor : Source | Sequential | Parallel | ∅
Successor : Seqential | Parallel | Sink
Segment : Seqential | Parallel

p = argmax
Segment

(

Length(Segment)
)

Queries execute on specific computing resources and the
set of resources available within the IoT infrastructure is
given by R = {ri}. We consider two classes of computing
resources, edge devices such as smart phones and micro-
controllers and Cloud virtual machines (VMs), each with a
specific computing capability as defined later. The mutually
exclusive set of edge devices and Cloud VMs are given by RE

and RC , respectively. Thus R = RE ∪RC and RE ∩RC = ∅.
A resource mapping function indicates the resource on which
a query executes:

M : Q → R

We define a privacy function:

P : 〈S,R〉 → {True, False}

that determines if a stream is allowed on a resource. If the
privacy for a stream si = 〈qj , qk〉 on resource rl is False,
this means that neither of the queries qj or qk, emitting or
consuming the stream, can be executed on resource rl, i.e.,

P(si〈qj , qk〉, rl) = False =⇒ M(qj) 6= rl & M(qk) 6= rl

Further we define A ⊆ Q as the set of anonymization
queries such that after a stream is processed by one of them,
successive streams along the path have been anonymized and
the privacy of such streams on any resource is True. For a
stream sk = 〈ql, qm〉 in the path p such that qm ∈ A, then
∀sj downstream of sk,P(sj , ⋆) = True, i.e., the streams
after the current one up to the sink have been anonymized
and their privacy on any resource is True.

A selectivity function is associated with each query of the
pipeline as a statistical measure of the fraction of incoming
events satisfying the query and generated as output events.
The selectivity is denoted by γ(q) and is the average number
of output events generated per input event. Output events
generated by a query are duplicated on all output streams.

The stream rate Ω defines the number of events per unit
time on a stream. The incoming stream rate entering each
input query of the pipeline is denoted by Ω≻. Knowing the
incoming stream rates and the selectivity per query in the
pipeline, the rate at its output stream sj generated by query
q can be calculated recursively as Ω(q) = γ(q) ×

∑

i
Ω(si),

where si are the input streams to query q. This can then
be used to estimate the outgoing stream rate, Ω≺, from the
output query for the entire pipeline.

Latency L is defined as the time for an event to move from
one resource to another, over a stream connecting queries
present on those resources. Latency is taken to be a con-
stant value for any two resource-pairs at a given maximum
event rate ΩL

max. Latency, rather than bandwidth, is often
the limiting factor for event processing on commodity net-
works, and once bandwidth starts becoming the bottleneck,
we assume that the pipeline cannot scale on those resources,
and, for simplicity, set L → ∞. Formally:

LΩ (ri, rj) = x | x ∈ R
+ ∪ 0 if Ω ≤ ΩL

max & i 6= j

LΩ (ri, rj) = ∞ if Ω > ΩL
max & i 6= j

LΩ (ri, rj) = 0 if i = j

where R+ is the set of positive Real Numbers and ri, rj ∈ R.
CEP engine implementations may be limited by the re-

source platform. If a CEP query (i.e., all its predicates) can
be evaluated by an engine on a resource, then the resource’s
expressivity is said to exist for the query. If a query is not
supported on a resource, then the expressivity is absent.

Like latency, the compute time C for a query is a constant
for a given query qi on a resource rj for all Ω ≤ ΩC

max. This
max value can be empirically obtained. Beyond this thresh-
old, the compute resources get saturated and the query can-
not scale. Since events arrive continuously, the pipeline is
unsustainable once saturated. Expressivity of a resource is
related to the computational time of the query, since for a
query that cannot be express on a resource, its C → ∞.

CΩ (qi, rj) = x | x ∈ R
+ if Ω ≤ ΩC

max & qi is expressive on rj

CΩ (qi, rj) = ∞ if Ω > ΩC
max & qi is expressive on rj

CΩ (qi, rj) = ∞ if qi is inexpressive on rj

The total makespan T for the path in the pipeline is the
time taken to generate a single event from the output query
after processing input events by each query on the resource
it is mapped to, and transferring events between resources.
For a mapping M and input rate Ω≻, the makespan for path
p is computed using its rate, latency and compute functions:

T =
∑

qi∈p

CΩ(qi)
(

qi,M(qj)
)

+
∑

qi∈p

LΩ(qi)
(

M(qi),M(qj)
)

As discussed before, edge devices are often collocated with
the incoming event sources, while the eventual decision mak-
ing happens on the Cloud. An edge cut is a bi-partition of
the path into two disjoint path segments. It denotes the
logical partitioning of the queries between edge and Cloud
resources. Queries in the first path segment execute on
the edge, queries in the other path segment execute on the
Cloud, and stream(s) at the split move events across these
resources. The mapping M captures this. For edge cuts
to form a consistent bi-partition, they should appear on a
Sequential, Source, or Sink Segment, or on each sequential
segment present in a Parallel Segment, recursively.

Optimization Problem Definition. Given the query
pipeline and its path, the selectivity and anonymization of
each query, the resources in the IoT system, the compute
time on each resource for a query, the latency between re-
sources, and a given incoming event rate, the optimization
problem is to find a edge cut that consistently bi-partitions
the path and maps it across different resources such that the
makespan time for the pipeline is minimized, while ensuring
that the privacy constraint is satisfied.

Given: G, p, γ,A,R, C,L,Ω≻

Minimize: T
Subject to Constraint: P

Output: M : Q → R

In the Campus Smart Water project, a sample CEP pipeline
performs three queries: data cleaning, temporal aggrega-
tion, and detecting water overflow. This forms the dataflow
graph, G. The resource re is the Android board reporting
the water level observations, L is the network latency in
moving this data stream to the Cloud rc for processing.
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Algorithm 1 SplitBruteForce

1: procedure SplitBF(EdgeCut EdgeCuts[ ], p, Ω≻)
2: Tmin = ∞, LHS = 0, RHS = 0
3: for sx ∈ EdgeCuts[ ] do ◮ Test each cut
4: ◮ Calculate LHS and RHS costs for cut
5: for sk = 〈∅, q≻〉 to sx | {sk = 〈qi, qj〉 ∈ p} do

6: LHS = LHS + LΩ(qi)(re, re) + C(qj , re)
7: end for
8: for sk = sx+1 to 〈q≺,∅〉 | {sk = 〈qi, qj〉 ∈ p} do

9: RHS = RHS + LΩ(qi)(rc, rc) + C(qj , rc)
10: end for
11: T = LHS +RHS +

∑

〈qx,⋆〉∈sx
LΩ(qx)(re, rc)

12: if T < Tmin then ◮ Found a better cut?
13: Tmin = T, Split = sx
14: end if
15: end for
16: return 〈Split, Tmin〉
17: end procedure

4. SOLUTION APPROACH

Edge cuts are locations in the path where the queries can
be split between the edge and the Cloud resources. The
EdgeCutDetection algorithm (omitted for brevity) scans
every stream in the path and decide if it is a candidate for a
split. It recursively identifies consistent edge cut candidates
in the path, starting with a cut that can happen prior to
the source queries (i.e., the entire pipeline is executed fully
on the Cloud) to a cut after the sink query (pipeline runs
entirely on the edge). The algorithm further limits cuts to
those that satisfy the privacy constraints on the streams,
by forcing anonymized queries to be on the edge (left hand
side, or LHS) or the Cloud (RHS) as needed. Each edge
cut includes one or more streams, and the cuts are stored
in EdgeCuts[ ], an array of linked lists, when every item in
the linked list represents a stream in the edge cut. If the
linked lists has only one item, it is a cut of a sequential path
segment, and multiple items indicate cuts across parallel
segments, one item per parallel segment.

We propose two algorithms SplitBruteForce (Alg. 1)
and SplitDP (Alg. 2) to obtain the optimal split that min-
imizes the makespan. SplitBruteForce computes T at
all candidate edge cuts by calculating each of their compute
times on the edge and the Cloud, and the latency to transfer
output events from the edge to the Cloud. It then picks the
cut with the least T . While tractable for short pipelines, its
time complexity is O(|S|2) for even sequential pipelines.

SplitDP uses Dynamic Programming to compute the T
assuming the pipeline fully runs in the Cloud, and incre-
mentally moves one query at a time to the edge. It uses
memoize to store previously computed values of T for edge
cuts, and reuses it to truncate the computation for incre-
mentally longer cuts. This has a time complexity of O(|S|).

5. FUTURE WORK

As part of future work, we propose to extend the formal-
ization by allowing multiple edge devices and Cloud VMs
for a single pipeline, and using an edge device’s power level
and efficiency as a QoS factor. We can also introduce ad
hoc anonymization queries for better privacy control, and
allow fine-grained partitioning of a single CEP query rather
than between CEP queries. We will also explore additional
solutions to the optimization problem, including those that
allow dynamic repartitioning based on changing conditions

Algorithm 2 SplitDynamicProgramming

1: procedure SplitDP(EdgeCut EdgeCuts[ ], p, Ω)
2: n = SizeOf(EdgeCuts), T [ ] = float[1..n]
3: T [1] =

∑

qi∈p
C(qi, rc) ◮ Run fully on Cloud

4: prev = 1
5: Define Update(prev) : T [i] = T [prev]− C(qj , rc)+

C(qj , re)+LΩ(qj)(re, rc) ◮ Incremental update
6: for i = 1 to n do
7: si = 〈qj , qk〉 ∈ EdgeCuts[ ]
8: if IsSeqSeg(si) then ◮ Cut Sequential
9: Update(prev) ◮ Move qj to edge
10: else ◮ Cut Parallel
11: if siandsprevhavesameparentstream then
12: Update(prev)
13: else
14: ancestor = Find(EdgeCuts,

Parent stream sharing suffix edge cuts)
15: Update(ancestor)
16: end if
17: end if
18: prev = i
19: end for
20: return 〈EdgeCuts[IndexOf(Min(T ))],Min(T )〉
21: end procedure

and user needs. The proposed solutions need to be evalu-
ated for practical feasibility and scalability through empiri-
cal benchmarks.
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